Development of fuel ammonia combustion technology in glass melting furnaces

AGC

Hiroki Kamiya Innovative Technology Laboratories, Technology General Division

AGC Inc.

September 29th ,2023

Your Dreams, Our Challenge

Net zero carbon emissions in 2050

AGC has set a goal of achieving net-zero carbon emissions in 2050. As milestones, a 30% reduction in GHG emissions in Scope1 and Scope2.

Technology Roadmap for Reducing GHG Emissions in Float Glass Melting Process

- Toward 2050, AGC aims to achieve the target by combining multiple technologies with a focus on electrification.
- We are focusing on ammonia which does not emit GHG during combustion.

		2019	20	030	2050
Europe & Asia	Large furnaces (Architectural and Automotive glass)	Fuel conversion from Heavy oil to Natural gas	Installation of electric Int booster * de Start of demonstration te introduction, and deployn of clean fuel**	troduction and ployment of hybrid furnaces ests, ment Carbon recycling, cullet recycling technology, etc.	Optimal combination of Electrification, clean fuel, carbon recycling.
	Small & Mid-size furnaces (Display business etc.)	Oxygen Combustiondeployment of Energy- saving technologiesInstallation of electric booster *		Start of demonstration tests, introduction, and deployment of electric melting furnace	cullet recycling technologies

Ammonia as Fuel

AGC Your Dreams, Our Challenge

Ammonia is expected to be a carrier for hydrogen and does not directly generate CO_2 even when burned.

Technology development is necessary to overcome challenges such as low flame temperature and the generation of NOx from the fuel source.

NEDO^{*} project

AGC has been participating NEDO project on fuel ammonia for industrial furnaces. Attempting to introduce ammonia fuel into glass melting furnaces through the project.

Illustration of industrial glass-melting furnace using ammonia as fuel

Reference: https://www.nedo.go.jp/

Ammonia combustion test in a glass melting furnace

In June of this year, AGC conducted world's first demonstration test of ammonia combustion in a glass melting furnace that produces architectural glass.

Glass melting furnace in which this demonstration test was conducted

Storage tank for ammonia fuel

Burners commonly used (several pairs)

+

Burners for Ammonia (200kW, one pair)

NOx concentration remained below the regulated value. We have taken the first step towards introducing ammonia fuel.

Natural gas 100%

Ammonia 100%

Inside a glass melting furnace burning with a specialized burner

END

